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ABSTRACT1
Special events are the primary trigger for the abnormal crowdedness patterns present in public2
transport (PT) systems. Accurately predicting these changes in crowdedness can enhance PT3
scheduling and crowd management, making it a crucial aspect of public transport demand manage-4
ment (PTDM). This study aims to forecast short-term crowdedness at PT stations during planned5
special events using publicly available opportunistic data. More specifically, we take football6
matches as an example of special events, and use Google Popular Times (GPT) as opportunis-7
tic data given its extensive spatiotemporal coverage in urban areas. We conduct a comparative8
analysis involving 15 football clubs from 11 different cities. We develop a graph-based neural9
network augmented with an attention mechanism and a positional embedding-enhanced temporal10
convolutional network to predict crowdedness at metro stations. Additionally, we design a spe-11
cific event indicator to capture the unique temporal characteristics associated with special events.12
The experimental results demonstrate that our proposed model effectively forecasts crowdedness at13
metro stations, with the inclusion of the event indicator significantly enhancing prediction accuracy14
during special events.15

16
Keywords: Crowdedness patterns, special events, opportunistic data, comparative analysis, graph17
neural network18
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INTRODUCTION1
Special events, whether planned or unplanned, such as the Olympics, football games, concerts, and2
other large gatherings, play a significant role in our lives and culture. However, these events also3
cause an abnormal increase in traffic demand, potentially decreasing service levels or even leading4
to network failures(1). Urban rail transport systems are pivotal in addressing the challenges posed5
by urban sprawl and suburbanization, offering substantial social, economic, and environmental6
benefits globally.7

Effective planning and management are crucial to handle the demand changes triggered8
by special events. Short-term forecasting of passenger flow, typically predicting trends within9
a 5-minute to 1-hour window, is integral to urban rail transit management and crowd regula-10
tion. Accurate short-term forecasts enable operators to optimize service schedules, plan station11
crowd regulation measures, and enhance passenger information systems. These forecasts ensure12
the transportation supply aligns precisely with passenger demand, facilitating emergency response13
planning. Therefore, evaluating the evolution of crowd patterns and forecasting passenger flow14
during special events is essential for effectively developing strategies to address these challenges.15

Rail passenger forecasting is a vital topic in transportation engineering with wide-ranging16
applications. It can be broadly divided into long-term forecasting, which usually spans years or17
months and guides the planning and construction of rail systems, and short-term forecasting, which18
is the focus of our research. Depending on the data format used, these forecasting problems can be19
classified into various types, including time series, grid, graph, and hybrids like temporal-spatial20
data. Traditional statistical models such as autoregressive integrated moving average (ARIMA) (2)21
and its variants, including seasonal autoregressive integrated moving average (SARIMA) (3) and22
generalized autoregressive conditional heteroscedasticity (GARCH) (4), have been widely used in23
traffic demand prediction. More recently, robust principal component analysis (RPCA) (5) has also24
been employed to address some limitations of ARIMA models.25

With the advent of AI technology, deep learning models have gained popularity in trans-26
portation system research due to their efficiency and accuracy in handling large-scale data and27
capturing nonlinear relationships. Despite the large number of models developed for traffic flow28
forecasting in recent years, they can be categorized into convolutional neural network (CNN)-based29
models, recurrent neural network (RNN)-based models, Graph neural network (GNN)-based mod-30
els, and various hybrids or variants. Most recent studies in short-term traffic state forecasting show31
that while statistical models primarily focus on temporal dependencies, deep learning models excel32
by incorporating both temporal and spatial features (6).33

Despite the growing interest in deep learning models for short-term rail transit system pas-34
senger forecasting, particularly during special events, most studies rely on data from automated35
fare collection systems, which are not always available. For example, there are no such systems36
for public transport in most cities in Germany. Our study addresses these gaps using Google Popu-37
lar Times (GPT) data. Specifically, we collected popularity data on public transport stations across38
ten cities and 17 metro lines to capture the temporal-spatial characteristics of passenger crowding.39
We employ a graph-based neural network, the attention with a positional embedding enhanced40
temporal convolutional network (APT-GCN) to predict crowdedness at metro stations, specifically41
focusing on the patterns under special events. Our model is trained and tested on this dataset to42
analyze crowdedness patterns across various public transport networks.43

The rest of the paper is structured as follows: following this introduction, we detail the44
process of data collection and present our model in the Methodology section. Next, we train the45
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proposed model and discuss testing results. Finally, the paper concludes with a summary of our1
findings.2

DATA COLLECTION AND PROCESSING3
In this section, we present a comprehensive overview of the data collection and processing. The4
dataset is bifurcated into three components: special events data, public transport network data and5
Google Popular Times (GPT) data.6

The special events dataset is first elaborated upon, where we define and describe the spe-7
cific events considered in this study. These events are contextualized within the public transport8
network and correlated with transit patterns. The second component pertains to the spatial domain,9
where the topological relationships of stations along transit lines are collected. Lastly, the tem-10
poral domain is addressed. The raw GPT data were collected from 428 public transport stations11
across 17 transit lines in ten cities, spanning nearly four months. Following the description of the12
GPT data, we performed data analysis and imputation. We also construct a new dummy feature to13
encapsulate the special event information.14

Special Events Dataset15
Special events, such as concerts, sports events, and festivals, significantly impact public transporta-16
tion usage and passenger flow. We selected football matches as a representative type of special17
event for our study. Football, being one of the most popular sports globally, often attracts large18
audiences, enriching people’s lives but also exerting significant pressure on public transport sys-19
tems. Our study focuses on 15 clubs from top European football leagues and the public transport20
routes passing through their home stadiums. Table 1 provides an overview of the basic information21
about these clubs and their associated transit lines. Stops represent the stations associated with22
the stadiums and are typically identified using transportation information provided on the clubs’23
official websites, where line ID is a unique identifier for each public transport line.24

Naturally, the various leagues and cup matches hosted at these stadiums are considered our25
special events. Within the time frame of our data collection, 122 such events occurred. We use the26
kickoff time of each match as the event start time and consider two hours post-kickoff as the event27
end time, accounting for the typical duration of a football match. Table 2 illustrate an example of28
these events.29

Public Transport Network Topology30
For the urban rail transit lines involved in the aforementioned special events, we collected their31
network maps to establish the spatial topological structures. These structures can be categorized32
into three types: linear, circular, and branching. Stations that are spatially adjacent are defined as33
those that are connected directly by a single segment of the rail line without any intermediate stops.34

Google Popular Time35
GPT data properties36
GPT data is provided for each Point of Interest (POI). The raw data from GPT includes historical37
popularity, current popularity, visit duration, and wait time estimates.38

• Current Popularity: This indicates the crowd level at a given POI at the current time.39
• Historical Popularity: This is based on average popularity over the past several weeks,40

providing a popularity value for each hour of each day of the week, resulting in 7 times41



Hu et al. 5

TABLE 1: Overview of Cities, Public Transport Lines, and Stadiums

City Line ID Stops Football Club
Munich U6 Fröttmanning Bayern Munich
Berlin S3 Berlin-Köpenick 1.FC Union Berlin
Dortmund U45, U46 Westfalenhallen Borussia Dortmund
Köln Tram 1 RheinEnergieStadion FC Köln
Augsburg Tram 3, Tram 8 Augsburg WWK ARENA FC Augsburg
Madrid Line 10 Santiago Bernabéu Real Madrid
Madrid Line 7 Estadio Metropolitano Atletico Madrid
Madrid Line 12 Los Espartales Getafe
Madrid Line 1 Portazgo Rayo Vallecano
London Piccadilly Arsenal Arsenal
London District Fulham Broadway Chelsea
Newcastle Yellow St James Newcastle United
Marseille M2 Sainte-Marguerite Dromel Olympique de Marseille
Copenhagen M3 Trianglen St. F.C. Copenhagen
Lisbon Blue Colégio Militar/Luz Benfica

TABLE 2: An Example of Special Events Data

City Line Event Start Time End Time
Copenhagen M3 FC Copenhagen-Manchester City Feb 13, 21:00 Feb 13, 22:55
Lisbon Blue Benfica-Toulouse Feb 15, 21:00 Feb 15, 22:58
Köln Tram 1 Köln-Bremen Feb 16, 20:30 Feb 16, 22:27
Madrid Line 7 Atletico Madrid-Las Palmas Feb 17, 14:00 Feb 17, 15:51
London Yellow Newcastle-Bournemouth Feb 17, 16:00 Feb 17, 17:58
Lisbon Blue Benfica-Vizela Feb 18, 19:00 Feb 18, 20:58
Marseille M2 Marseille-Shakhtar Feb 22, 21:00 Feb 22, 22:59

24 data points. It shows how crowded the location typically is during different times of1
the day.2

• Visit Duration: This data shows how much time customers typically spend at the specific3
POI, estimated based on patterns of customer visits over the last several weeks.4

• Wait Time Estimates: This shows how long a customer would have to wait before receiv-5
ing service during different times of the day.6

We extract current popularity as the primary indicator of station crowding. Additionally, we or-7
ganize other data points as potential features for future use, providing varies models with more8
comprehensive information for analysis.9
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Data quality analysis1
We collected GPT data for the aforementioned metro stations from February 13, 2024, to June 4,2
2024, resulting in 4617 timestamps. Despite our best efforts, GPT data is not always available at3
all stations and times. Data collection failures may stem from the inherent unavailability of data or4
from unavoidable issues like network instability during the collection period. Therefore, we first5
analyze the collected data to provide a basis for subsequent data processing.6

Our analysis is conducted at the level of each subway line and station. Taking Madrid Metro7
Line 1 as an example, Figure 1 shows the statistics of popularity values at various stations during8
the data collection period, and Figure 2 illustrates the distribution of data points collected over a9
week. Given our setting of collecting data from all stations every 30 minutes, there should ideally10
be 336 data points per week. Stations with abnormal data, poor quality, or significant missing11
values, such as Atocha station in this instance, are removed from the dataset. Subsequently, we12
proceed with data imputation to address the missing data issue.13
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FIGURE 1: GPT popularity value distribution of stations in Madrid Line 1

Data imputation with Temporal Regularized Matrix Factorization (TRMF)14
In this section, we introduce the data imputation algorithm that is applied to complete the GPT15
dataset. Our problem can be defined as a random missing spatial-temporal data problem, where16
each sensor loses observations completely at random. To address this issue, TRMF is employed.17
This model incorporates temporal dependencies into the matrix factorization process(7). Temporal18
dependencies are represented by xi,19

xt ≈ ∑
l∈L

θl ⊙ xt−l (1)20

Then,21
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FIGURE 2: Number of collected data points of stations in Madrid Line 1

RAR(X | L ,Θ,η) =
1
2

f

∑
t=ld+1

(
xt − ∑

l∈L

θl ⊙ xt−l

)⊤(
xt − ∑

l∈L

θl ⊙ xt−l

)
+

η

2

f

∑
t=1

x⊤t xt (2)1

where L = {l1, l2, . . . , ld} is a lag set, in our task is setting to L = {1,2,48}, and θl ∈ Rr,∀l is2
weight to decide autoregressive (AR). Thu the TRMF is to solve,3

min
W,X ,Θ

1
2 ∑
(i,t)∈Ω

(
yit −w⊤

i xt

)2
+λwRw(W )+λxRAR(X | L ,Θ,η)+λθRθ (Θ) (3)4

where Rw(W ) = 1
2 ∑

m
i=1 w⊤

i wi and Rθ (Θ) = 1
2 ∑l∈L θ⊤

l θl are regularization terms.5
Consequently, a spatial-temporal popularity data with a 30-minute interval based on GPT6

was obtained by applying data imputation.7
In summary, this section sets the groundwork for understanding the data-related approaches8

employed in our study, providing a detailed account of the dataset’s structure, collection, and9
enhancements, ensuring the reliability of our dataset for subsequent analysis.10

METHODOLOGY11
Problem Definition12
The primary objective of this study is to analyze the crowding patterns at public transport stations13
during special events and to forecast future crowdedness based on historical data. Crowdedness is14
quantified using the popularity data derive from Google Popular Times, as previously mentioned.15
The study is divided into two main tasks. The first task involves a cross-analysis of the crowding16
patterns along public transport lines in different cities to identify similarities and differences. The17
second task is treated as a short-term traffic forecasting problem. This involves proposing an18
attention with positional embedding enhanced temporal convolutional network (APT-GCN) model19
to predict the future popularity at each station based on a 4-hour historical popularity data.20

Definition 1 Public Transport Network G. A public transport network is described as an21
unweighted, undirected graph G = (V,E), representing the inherent typologies of public transport22
lines. Here, the graph’s node set V = {v1,v2, . . . ,vN} represents the set of stations, where N is the23
number of stations. The set of edges E represents the connections between stations, with an edge24
existing between each pair of adjacent stations.25
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Definition 2 Adjacency Matrix AN×N . The adjacency matrix A ∈ RN×N is a binary matrix1
that represents the connections between stations in the public transport network G. Each element2
ai j in the matrix is defined as follows:3

ai j =

{
1 if there is an edge between station vi and station v j,

0 otherwise.
(4)4

Definition 3 Feature Matrix XN×M. Short-term popularity sequence is considered an at-5
tribute of network nodes and is represented by the feature matrix X ∈ RN×S, where S denotes the6
length of the historical time series. At time t, Xt ∈ Ri×N represents the popularity at each node,7
while i corresponds to the dimensionality of the attribute data, accommodating scenarios where8
there are multiple attributes.9

Defination 4 Multi-step popularity forecasting. In the context of multi-step popularity10
forecasting, the goal is to learn a function f that maps the public transport network G and the11
feature vector x ∈ R1×N (in some case, feature matrix X ∈ Ri×N considering the multiple attribute12
features) to future T -step predictions of popularity for each station. This can be formally described13
as:14

(xt+1, . . . ,xt+T ) = f (G,(xt−s, . . . ,xt−1,xt)) (5)15
where s denotes the length of the historical popularity sequences, and T represents the number of16
future steps to be predicted.17

Overview of the model architecture18
In this study, we proposed a spatial-temporal model with a graph attention module enhanced by19
position embedding mechanism (APT-GCN). Figure 3 illustrate the structure of the APT-GCN20
model. In the first part, the method to capture temporal-spatial dependencies is based on the Tem-21
poral Graph Convolutional Network (TGCN) proposed by (8). It begins by taking time series22
data of popularity, with a length s for each node, and the adjacency matrix A as input. A graph23
convolution network (GCN) is then used to capture spatial features from this data. The output24
of the GCN is subsequently fed into a gated recurrent unit (GRU), which allows for the tempo-25
ral flow of information across different time snapshots. Following the T-GCN module, the output26
is further processed by an attention mechanism designed to integrate historical information from27
non-adjacent stations. This is achieved through a position embedding that enhances the attention28
module’s ability to incorporate information from distant nodes. Finally, the results from the atten-29
tion module are aggregated along the temporal dimension to produce forecasts for the next T time30
steps. This model effectively combines short-term historical data for each node with information31
from other nodes in the graph, enabling more accurate predictions of future popularity trends.32

Combining spatial-temporal popularity data with special event data33
We will add an event label to the popularity data to capture the unique passenger flow character-34
istics during special events. For each special event, the start and end times have been recorded.35
Using this information, we will introduce a new feature, ’event,’ to the popularity data. The spe-36
cific indicator is expressed in 6, designating a buffer time of 2 hours before the start and after the37
end of the event. The event feature for the corresponding station j will be set to 1 if it falls within38
this time range, and 0 otherwise.39
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FIGURE 3: An overview of the attention with positional embedding enhanced temporal convolu-
tional (APT-GCN) network.

eventi j =

{
10− i if ti j ∈ (tstart − i×30minutes, tend + i×30minutes)

∧
v j ∈ Lm, i < 10

0 otherwise.
(6)1

where ti j is the time stamp i of station j, tstart and tend represent the start time and end time of event2
m, L+m is the public transport line corresponding to event m.3

Gathering neighbours’ influence via graph convolution layer4
Graph Convolutional Networks (GCNs) are a type of semi-supervised model introduced by Kipf5
and Welling in 2016 (9). GCNs enhance traditional CNNs within the domain of graph neural6
networks. While CNNs can capture local spatial features in Euclidean space, such as those in7
images, they fall short in domains like transportation where spatial dependencies arise from net-8
work topological structures. GCNs address this limitation by performing convolution operations9
on non-Euclidean data.10

The fundamental idea of GCNs is to aggregate features from neighboring nodes and then11
transform these features. By stacking k layers, a GCN can capture the features of k-order neigh-12
bors. Given the adjacency matrix A, which represents non-Euclidean graph data, a GCN typically13
performs two operations: propagation and transformation. Propagation involves using filters in the14
Fourier space to capture and aggregate features from first-order neighbors. The aggregated spatial15
information is then transformed between layers through linear transformations or activation func-16
tions. Given the feature matrix X and the matrix Ã representing the network structure, the output17
of GCN layer l +1 is computed as follows:18

H(l+1) = σ

(
D̃− 1

2 ÃD̃− 1
2 H(l)

θ
(l)
)

(7)19

where H̃(l) is the output of layer l, Ã = A+ I denotes adjacency matrix adding self-connection,20
I ∈ RN×N is an identity matrix. D̃ is the degree matrix computed by D̃ = ∑ j Ãi j. θ (l) denote the21
parameter of layer (l +1). σ(·) represents the activation function.22

Thus, a graph convolutional network can be defined as:23

H(l) = f (H, Â) = σ

(
ÂH(l−1)W (l)

)
(8)24
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1
Z = f (n)

(
X , Â

)
= f

(
f
(
. . . f (X , Â) . . .

))︸ ︷︷ ︸
n layers

(9)2

Â = D̃− 1
2 ÃD̃− 1

2 which is a pre-process of adjacency matrix. W(l) ∈ RS×C denoted the3
weight of layer l, where S is the length of historical popularity series, and C denotes number of4
units. n is the number of layer, to capture spatial dependencies from n-order neighbours. In our5
model, n is set to be 2. X is input feature matrix and Z ∈RN×C is the final output of GCN network6
and C is the number of units from output layer.7

Gated recurrent units for temporal domain8
When addressing transportation issues—whether they pertain to road traffic, rail transit, or a com-9
bination of public transportation types—participants invariably move through a specific network10
along the time dimension. In the short term, historical data significantly influences the prediction11
of traffic related variables at a given moment. This relationship has been highlighted in various12
studies, which emphasizes the importance of incorporating historical data to enhance the accuracy13
of traffic forecasts (10). Therefore, one of the primary objectives in traffic forecasting is to capture14
temporal dependencies effectively. This goal can be achieved using RNNs, which are designed to15
handle sequence data and capture dependencies across time. RNNs have been extensively studied16
for their ability to model temporal sequences and their applications in time-series forecasting.17

RNNs come in several variants, with Long Short-Term Memory (LSTM) units and Gated18
Recurrent Units (GRUs) being among the most notable. LSTM units were introduced by Hochre-19
iter and Schmidhuber in 1997(11) to address the vanishing gradient problem in traditional RNNs20
(12). LSTMs use a more complex structure involving input, forget, and output gates to control21
the flow of information, which helps them maintain long-term dependencies. On the other hand,22
GRUs, introduced by Cho et al. in 2014, simplify this structure by combining the input and forget23
gates into a single update gate, making them computationally less demanding (13). While both24
models utilize gating mechanisms to control the flow of information, LSTMs generally involve25
more complex operations, which can lead to longer training times (14). In our study, we evalu-26
ated the performance of GRUs and LSTMs on sample data, as well as the combination of these27
units with single-layer models. Experimental results indicated that while LSTM and the com-28
bined model did not significantly improve accuracy under the same conditions, they considerably29
increased the training time. During our experiment on several lines, the GRU layer achieved an30
accuracy of 0.9145, while the LSTM layer option slightly improved accuracy to 0.9181, marking a31
0.39% increase. However, this improvement in accuracy came at the cost of a 19.16% increase in32
training time, rising from 2696.31 seconds to 3213.82 seconds. Therefore, considering the trade-33
offs between accuracy and computational efficiency, we ultimately chose GRUs as the recurrent34
units to capture temporal information in our model. The GRU cell processes the output Q ∈RN×C35
from graph convolutional network by:36

Qt = (1−Ut)Qt−1 +UtCt (10)37
Ut is the update gate to control information from last time step, it along with memory content at38
current moment Ct are computed as:39
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Ut = σ(WU [Zt ,Qt−1]+bU) (11)1

Rt = σ(WR[Zt ,Qt−1]+bR) (12)2

Ct = tanh(WCZt +WC(RtZt−1)+bC) (13)3
where Zs ∈ RN×C,s ∈ (0,S) is the output of last graph convolutional section. Comparing the4
original GRU unit, here adding Rt ∈ RN×C as the reset gate, considering the degree of ignoring5
information from early time steps.6

The output of the GRU, incorporating temporal dynamics, will be passed to the subsequent7
attention module. Noticeably, the output Q from the previous module has not aggregated the s time8
steps along the time sequence, thus still retaining the information in the time series dimension.9

Graph attention module for enhancing non-Local dependencies10
Crowdedness forecasting in public transport systems, as a subset of general traffic prediction, in-11
herits characteristics from traffic forecasting while presenting unique challenges. Public transport12
operates on a fixed service schedule, leading to discrete passenger counts at each station and dis-13
tinctive passenger flow dynamics. This discrete nature becomes particularly pronounced during14
special events, where sudden surges in passenger volumes can influence multiple subsequent time15
steps and nodes within the network (15).16

In previous modules, we utilized graph convolutional networks (GCNs) to capture spa-17
tial features within the network. However, a single-layer GCN aggregates information only from18
immediate neighbors, neglecting the flow of popularity between non-adjacent stations. This limita-19
tion is particularly critical in scenarios where rail public traffic passenger transfers between distant20
stations occur rapidly. For instance, the total trip duration on Munich’s U-Bahn Line 6, which21
comprises 27 stations, is approximately 51 minutes(16). Even considering the normal operation22
schedule is every 10 minutes on this line, this relatively short duration means that passengers can23
traverse almost the entire line within a single data collection interval, posing a challenge for single24
or dual layer GCN to capture neighbour node’s features. To address this, merely stacking GCN25
layers to capture higher-order neighbor information is inefficient and computationally expensive,26
given that the stations of urban public lines are usually beyond 20-30. Moreover, GCNs lack the ca-27
pability to assign different weights to different nodes, limiting their effectiveness in heterogeneous28
networks.29

To overcome these limitations, we introduce a graph attention module to capture non-local30
dependencies effectively. The graph attention mechanism allows the model to weight the impor-31
tance of each node differently, thus providing a more nuanced representation of the network. This32
module is further enhanced with a position embedding mechanism, which helps in integrating33
historical information from non-topologically adjacent stations into the current node’s prediction.34
This mechanism is particularly effective for non-homophilic graphs(17), enabling us to capture35
features from stations that are not geographically or topologically proximate but share similar36
characteristics. This significantly enhances the accuracy of popularity forecasting, especially un-37
der special event conditions. During such events, passenger movement along public transport lines38
tends to follow more predictable patterns, often involving transfers from major interchange sta-39
tions, such as airports or train stations, to event-specific locations. This consideration is crucial for40
improving the precision of our forecasts.41

The integration of a graph attention module thus not only improves the capture of spatial42
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dependencies across distant nodes but also ensures that the model remains efficient and effective.1
This approach is particularly vital for scenarios involving special events, where unexpected spikes2
in passenger demand necessitate a robust model capable of dynamic and rapid adaptation. This3
module is based on the Graph Attentional Networks with Positional Embeddings (GAT-POS) pro-4
posed by Ma et al. (17). It comprises two graph attention layers and two positional embedding5
layers that interact with each other, enhancing the model’s ability to capture complex spatial rela-6
tionships within the data. Taking the output Q from last section and reshaping it into vectors of7
node features qv ∈ RS×C as input, and q′

v ∈ R1×C as expected output, the attention coefficients is8
computing by9

ek
vu = a(Wkqv +Uk pv ∥Wkhu +Uk pu) (14)10

where Wk, Uk and ak are the weights in the k-th attention head. ∥ is the concatenation operation.11
pv is the positional embedding for node v computed by,12
pl

v = σ(W l
emb pl−1

v ) (15)1314
L(pvv∈N ,G) = ∑

v∈N
∑

u∈N (v)
(−logσ(pT

v pu)−Q ·Eu′ Pn(v)
log(σ(−pT

v pu′ ))) (16)15

where l is the l-th position embeddings layer, and Wl
emb is the learned weight matrix of position16

embeddings layer l. Equation 16 describes loss function of the unsupervised embedding model.17
The attention coefficients evu are normalized by softmax function:18

α
k
vu = so f tmaxu(evu) =

exp(evu)

∑ j∈Nv exp(ev j)
(17)19

Then, a linear transform is applied to gain the output q′
v by combining neighbours with20

normalized coefficients,21

q
′
v = σ(

1
K

K

∑
k=1

∑
u∈Nv

α
k
vuW kqu) (18)22

Finally, a fully connection layer is used to combined the S time step and make prediction23
on future T -step. In conclusion, the APT-GCN model effectively captures the spatial-temporal24
dependencies in public traffic networks and efficiently predicts future popularity. The first module25
captures the spatial information of topologically adjacent nodes on the public transit lines, as well26
as the historical information of the time series. The second module utilizes a graph attention net-27
work with position embedding mechanisms to obtain information on semantically adjacent stations28
in crowdedness patterns.29

RESULTS30
In this section, we employ the collected and processed GPT datasets to analyze the popularity of31
various urban public transit stations. Using this data, we train the APT-GCN model on each public32
transport network and present the forecasting results.33

Setting Model Parameters34
The model is implemented using TensorFlow 2.16.1, running on a Mac Book Pro with an Apple35
M2 Max chip with 32 GB of memory and 12 cores. The training process encompasses 100036
epochs, utilizing a batch size of 128. The dataset is partitioned into training, validation, and test37
sets, adhering to a proportion of 7:1:2. The optimization of the model is facilitated by the adaptive38
moment estimation (Adam) optimizer, with a learning rate set at 0.001. Furthermore, the units of39
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the hidden layers are configured to 64. The historical time series data length S is 8, and the model1
performs one-step predictions with the prediction length T set to 1.2

Evaluation Metrics3
The following error metrics are introduced to evaluate performance on popularity prediction of the4
APT-GCN model:5

• Root Mean Squared Error (RMSE):6

RMSE =

√
1
M

M

∑
i=1

(yi − ŷi)2 (19)7

• Mean Absolute Error (MAE):8

MAE =
1
M

M

∑
i=1

|yi − ŷi| (20)9

• Coefficient of Determination (R2):10

R2 = 1− ∑
M
i=1(yi − ŷi)

2

∑
M
i=1(yi − ȳ)2

(21)11

• Explained Variance Score (Var):12

Var = 1− Var(Y− Ŷ)

Var(Y)
(22)13

• Accuracy:14

Accuracy = 1−
∥∥Y− Ŷ

∥∥
F

∥Y∥F
(23)15

where M is the number of samples, yi, ŷi and ȳirepresent the real, prediction and average popularity16
vector of network of ith sample. Y and Ŷ is the set of yi and ŷi. ∥·∥ represents the Frobenius norm.17

Experiment Results18
Overview19
Table 4 presents the prediction results of the model across the entire public transport network. For20
each line, the final results of the evaluation metrics are derived from the arithmetic mean of all21
the stations on that line. The table provides the evaluation results for both regular conditions and22
special event scenarios. Since multiple events occurred during the data coverage period for each23
line, the event results presented in this table are also arithmetic means of the results from all events.24
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TABLE 4: The Evaluation of Crowdedness Forecasting on GPT dataset under Regular and Special
Event Scenario

Evaluation Matrix Scenario rmse mae r2 var acc

Line 1
Regular 0.0299 0.0226 0.9511 0.9525 0.9132

Special Event 0.0243 0.0182 0.9554 0.9586 0.9215

Line 7
Regular 0.0484 0.0356 0.9183 0.9184 0.8804

Special Event 0.0462 0.0351 0.8952 0.9045 0.8843

Line 10
Regular 0.026 0.018 0.924 0.9244 0.8806

Special Event 0.0254 0.017 0.898 0.9026 0.8546

Line 12
Regular 0.0288 0.0217 0.9603 0.9603 0.9157

Special Event 0.0254 0.0198 0.9491 0.9545 0.906

Blue
Regular 0.0526 0.0406 0.9109 0.9138 0.861

Special Event 0.0503 0.0378 0.895 0.9097 0.859

District
Regular 0.0391 0.0301 0.8978 0.898 0.8834

Special Event 0.0303 0.0232 0.8744 0.8829 0.8989

Piccadilly
Regular 0.0492 0.0383 0.8662 0.8668 0.8707

Special Event 0.0415 0.0318 0.8734 0.8745 0.8794

M2
Regular 0.0235 0.0151 0.983 0.9831 0.9099

Special Event 0.0401 0.0236 0.9662 0.9673 0.8744

M3
Regular 0.0416 0.0312 0.915 0.9155 0.889

Special Event 0.0473 0.0351 0.8677 0.8737 0.8713

S3
Regular 0.0224 0.017 0.9011 0.9019 0.8652

Special Event 0.0188 0.014 0.9006 0.9143 0.8775

Tram1
Regular 0.016 0.012 0.9579 0.9585 0.919

Special Event 0.0211 0.0159 0.872 0.8761 0.9061

Tram3
Regular 0.051 0.0376 0.9525 0.9528 0.8693

Special Event 2 - - - - -

U6
Regular 0.0465 0.0346 0.8764 0.8765 0.8564

Special Event 0.032 0.0252 0.8833 0.8975 0.9009

U45
Regular 0.0471 0.0369 0.8148 0.8169 0.8253

Special Event 2 - - - - -

U46
Regular 0.0406 0.0277 0.9533 0.9539 0.8724

Special Event 2 - - - - -

Yellow
Regular 0.026 0.0195 0.9569 0.9571 0.9094

Special Event 0.0249 0.0185 0.9408 0.9423 0.9199
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For the transport lines Tram 3 in Augsburg, Germany, and U45 and U46 in Dortmund,1
Germany, no valid data under special events was available during our collection period; therefore,2
the results for special events are missing for these lines. Despite this, examining the prediction3
performance for other lines under special event conditions reveals a notable improvement.4

Robustness during special events5
In our experiments, we initially tested two models. One considers only the popularity feature6
for each time series and another additionally includes the encoded event feature. The results for7
Madrid metro Line 1, Line 7 and Munich metro U6 present in Table 5, indicating that while the8
inclusion of the event feature might lead to a decrease in overall performance across the entire test9
set, such as with Line 1, Line 7 and U6 where the average accuracy of the second model decreased10
by 0.94%, 1.03% and 0.94% respectively, it significantly improves performance in special event11
scenarios by 216.78%, 20.04% and 54.21%. This demonstrates that our model is more robust12
in capturing crowdedness patterns during special events, enhancing the accuracy of popularity13
predictions under these conditions. This improvement is visualized in Figure 4, which clearly14
shows the enhanced prediction accuracy of our model during special events.15

TABLE 5: Performance Comparison of Different Models

Line Scenario Model rmse mae r2 var acc

Line 1

Regular Model 1 0.027 0.0201 0.9603 0.9603 0.9218
Model 2 0.0299 0.0226 0.9511 0.9525 0.9132

Special Event Model 1 0.6417 0.6397 -67.1586 0.5764 0.2909
Model 2 0.0243 0.0182 0.9554 0.9586 0.9215

U6

Regular Model 1 0.0439 0.0338 0.89 0.8901 0.8645
Model 2 0.0465 0.0346 0.8764 0.8765 0.8564

Special Event Model 1 0.1927 0.151 -0.0924 -0.0841 0.5842
Model 2 0.032 0.0252 0.8833 0.8975 0.9009

Line 7

Regular Model 1 0.0447 0.0331 0.9303 0.931 0.8895
Model 2 0.0484 0.0356 0.9183 0.9184 0.8804

Special Event Model 1 0.1647 0.1235 0.2617 0.3587 0.7367
Model 2 0.0462 0.0351 0.8952 0.9045 0.8843

Interpretation and visualisation of crowdedness pattern16
To further examine the details of the experiment results, Figure 5a visualizes the prediction re-17
sults for a Germany Bundesliga (first-class) football match on a weekday. Specifically, Figure 5b18
shows a comparison between the predicted results(? ) and the ground truth on the training set is19
demonstrating.20

This result represents a typical crowdedness pattern at public transport stations near venues21
during special events. Popularity increases and peaks approximately two hours before the event22
begins (as observed in Munich), decreases during the event, and then reaches another peak im-23



Hu et al. 16

Line 1 U6 Line 7
Line

0.2

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Model 1 - Regular
Model 1 - Event
Model 2 - Regular
Model 2 - Event

FIGURE 4: Model Performance Analysis

(a) Prediction During Special Event

(b) Prediction on Training Set

FIGURE 5: Forecasting Crowdedness at Munich Metro Line U6 station Fröttmaning

mediately after the event ends as passengers gradually disperse over time. Figure 6 illustrates the1
popularity comparison between special event periods and average value on weekday and weekend,2
with Special Event 1 representing an event held on a weekend and Special Event 2 representing an3
event held on a weekday.4

When examining the entire public transport line, it is evident that crowdedness patterns5
vary significantly across different events, cities, and networks. Figure 7(a) illustrates the distribu-6
tion of popularity on the Madrid Metro Line 7 during the La Liga match between Atletico Madrid7
and Betis on March 3, 2024. This match began at 16:15 and ended at 18:15. The blue font corre-8
sponds to the station Estadio Metropolitano, which is closest to the stadium. Surrounding stations9
experienced an increase in popularity before and after the match, whereas Estadio Metropolitano10
itself did not show a significant increase, potentially due to the station’s design.11
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FIGURE 6: Popularity Comparison during Special Event and Regular Times at Munich Metro
Line U6 station Fröttmaning

Figure 7(b) represents the match between Getafe and Mallorca on May 26, 2024, on the1
Madrid Metro Line 12. Los Espartales, the station near the stadium, exhibited crowding during the2
event. The crowding effect extended to specific upstream and downstream stations on the line.3

Figure 7(c) presents data from the Premier League match between Newcastle and Wolves4
on March 2, 2024. The corresponding line is the Newcastle Metro Yellow Line. According to the5
Newcastle subway network map (Figure 8), St James, the station near the stadium, is located at6
one end of this circular line. Other stations on the line showed passenger flow patterns typical of7
regular times, indicating limited impact from the event.8

Figure 7(d) highlights the match between Arsenal and Chelsea on April 23, 2024, on the9
London Tube Piccadilly Line. The special event significantly influenced popularity at Arsenal and10
nearby stations, displaying a strong spatiotemporal correlation with the event’s timing.11

CONCLUSIONS12
Our study analyzes the crowdedness patterns at public transport stations during special events13
across multiple cities and public transport networks by constructing a spatial-temporal graph neu-14
ral network model. Recognizing that sensor data (e.g., IC card data) is not always available or15
open-source and digging into the potential of opportunistic data, we have constructed a dataset16
comprising 428 public transport stations across 17 lines in 10 cities derived from Google Popu-17
lar Time data. Our model is designed to handle the abnormal passenger flow that special events18
bring, a significant departure from regular traffic patterns. This unique feature of our model as-19
sures its robustness in the face of short-term forecasting challenges. We’ve also considered the20
inherent spatial characteristics of the traffic network, integrating the topological structure of rail21
lines and the adjacency relationships between stations into the temporal dependencies. In our22
experiments, we initially compared models that considered the event feature with those that did23
not. We demonstrated that the model incorporating the designated special feature significantly24
improved performance under special event scenarios without substantially compromising overall25
accuracy. We showcased the model’s predictive performance across all networks and visualized26
the results, along with the visualization and analysis of popularity change under different scenar-27
ios. Our research underscores the importance of including special event data in passenger flow28
prediction. The APT-GCN model effectively addresses the challenges posed by special events,29
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(a) During Special Event on Line 7 (b) During Special Event on Line 12

(c) During Special Event on Yellow Line (d) During Special Event on Piccadilly Line

FIGURE 7: Crowdedness Pattern during Special Events

providing valuable insights for urban rail transit management. Future work can explore additional1
data sources and refine the model to enhance prediction accuracy and operational efficiency across2
urban environments.3
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